104 research outputs found

    Full-info Training for Deep Speaker Feature Learning

    Full text link
    In recent studies, it has shown that speaker patterns can be learned from very short speech segments (e.g., 0.3 seconds) by a carefully designed convolutional & time-delay deep neural network (CT-DNN) model. By enforcing the model to discriminate the speakers in the training data, frame-level speaker features can be derived from the last hidden layer. In spite of its good performance, a potential problem of the present model is that it involves a parametric classifier, i.e., the last affine layer, which may consume some discriminative knowledge, thus leading to `information leak' for the feature learning. This paper presents a full-info training approach that discards the parametric classifier and enforces all the discriminative knowledge learned by the feature net. Our experiments on the Fisher database demonstrate that this new training scheme can produce more coherent features, leading to consistent and notable performance improvement on the speaker verification task.Comment: Accepted by ICASSP 201

    Max-margin Metric Learning for Speaker Recognition

    Full text link
    Probabilistic linear discriminant analysis (PLDA) is a popular normalization approach for the i-vector model, and has delivered state-of-the-art performance in speaker recognition. A potential problem of the PLDA model, however, is that it essentially assumes Gaussian distributions over speaker vectors, which is not always true in practice. Additionally, the objective function is not directly related to the goal of the task, e.g., discriminating true speakers and imposters. In this paper, we propose a max-margin metric learning approach to solve the problems. It learns a linear transform with a criterion that the margin between target and imposter trials are maximized. Experiments conducted on the SRE08 core test show that compared to PLDA, the new approach can obtain comparable or even better performance, though the scoring is simply a cosine computation

    A Study on Replay Attack and Anti-Spoofing for Automatic Speaker Verification

    Full text link
    For practical automatic speaker verification (ASV) systems, replay attack poses a true risk. By replaying a pre-recorded speech signal of the genuine speaker, ASV systems tend to be easily fooled. An effective replay detection method is therefore highly desirable. In this study, we investigate a major difficulty in replay detection: the over-fitting problem caused by variability factors in speech signal. An F-ratio probing tool is proposed and three variability factors are investigated using this tool: speaker identity, speech content and playback & recording device. The analysis shows that device is the most influential factor that contributes the highest over-fitting risk. A frequency warping approach is studied to alleviate the over-fitting problem, as verified on the ASV-spoof 2017 database

    Phone-aware Neural Language Identification

    Full text link
    Pure acoustic neural models, particularly the LSTM-RNN model, have shown great potential in language identification (LID). However, the phonetic information has been largely overlooked by most of existing neural LID models, although this information has been used in the conventional phonetic LID systems with a great success. We present a phone-aware neural LID architecture, which is a deep LSTM-RNN LID system but accepts output from an RNN-based ASR system. By utilizing the phonetic knowledge, the LID performance can be significantly improved. Interestingly, even if the test language is not involved in the ASR training, the phonetic knowledge still presents a large contribution. Our experiments conducted on four languages within the Babel corpus demonstrated that the phone-aware approach is highly effective.Comment: arXiv admin note: text overlap with arXiv:1705.0315

    Deep Speaker Feature Learning for Text-independent Speaker Verification

    Full text link
    Recently deep neural networks (DNNs) have been used to learn speaker features. However, the quality of the learned features is not sufficiently good, so a complex back-end model, either neural or probabilistic, has to be used to address the residual uncertainty when applied to speaker verification, just as with raw features. This paper presents a convolutional time-delay deep neural network structure (CT-DNN) for speaker feature learning. Our experimental results on the Fisher database demonstrated that this CT-DNN can produce high-quality speaker features: even with a single feature (0.3 seconds including the context), the EER can be as low as 7.68%. This effectively confirmed that the speaker trait is largely a deterministic short-time property rather than a long-time distributional pattern, and therefore can be extracted from just dozens of frames.Comment: deep neural networks, speaker verification, speaker featur
    • …
    corecore